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Abstract

Aggregated time series are widely used in business and eco-
nomics, where top-level sequences (e.g., category sales) ag-
gregated from underlying sequences (e.g., individual items)
often exhibit clearer trends and are therefore typically the
primary focus of forecasting tasks. However, treating top-
level sequences as ordinary multivariate time series is inap-
propriate in the presence of coupled aggregation constraints.
The core challenge arises in coupled aggregation structures,
where a single underlying sequence contributes to multi-
ple top-level sequences, as simple nonnegativity constraints
of underlying sequences induce highly complex constraints
among top-level sequences. Existing methods fail to achieve
high accuracy while satisfying these constraints. To address
this, we propose ProCAST, a projection-based framework
that adjusts forecasts from any multivariate base model to sat-
isfy coupled aggregation constraints. By introducing virtual
underlying sequences and leveraging orthogonal and oblique
projection, our method ensures that the top-level forecasts
are feasible without explicitly deriving complex constraints.
Theoretically, we prove that the proposed method guaran-
tees improved accuracy under distance-based loss functions.
Experiments on real-world datasets show that our method
completely eliminates constraint violations while achieving
higher accuracy than current state-of-the-art approaches.

Code — https://github.com/HellOwhatAs/ProCAST

Introduction
Aggregation is a common modeling paradigm in business
and economic sales forecasting (Hyndman et al. 2011).
When forecasting product sale trends, aggregated statis-
tics often provide more meaningful insights than the large,
sparse sales figures of individual items (Teixeira, Oliveira,
and Ramos 2024). We refer to the sequences produced
through aggregation as the top-level sequences, and those
used to form them as the underlying sequences. Although
forecasting may focus solely on top-level sequences, we
demonstrate that the long-overlooked coupled aggregate
constraints among them can substantially compromise both
forecasting accuracy and structural consistency when these
sequences are treated as ordinary multivariate time series.
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Figure 1: Comparison of how different forecasting methods
utilize information within the aggregation structure.

If any underlying sequence does not aggregate to more
than one top-level sequence, then we refer to the aggrega-
tion structure as not-coupled. Otherwise, it is referred to as
a coupled aggregate structure. In such structures, simple
range constraints on the underlying sequences (e.g., non-
negativity, which is common in statistical measures) can
lead to extremely complex constraints among top-level se-
quences. We refer to these constraints as coupled aggregate
constraints. For example, four non-negative underlying se-
quences, denoted as a, b, c, d, are aggregated to three top-
level sequences labeled as A,B,C according to the aggre-
gate structure in Figure 1.

This structure leads to the constraints A + C ≥ B and
B + C ≥ A, which can be derived through variable elim-
ination. As the number of underlying sequences increases,
these constraints become even more complex.

The challenge of this problem lies in balancing the trade-
off between prediction accuracy and meeting constraints.

First, multivariate time series forecasting methods will vi-
olate the constraints if we ignore them and directly forecast
top-level sequences (Liu et al. 2024; Lu et al. 2024). This is
because the feasible region that satisfies the constraints is ex-
tremely small. For example, in the coupled aggregate struc-
ture of one real-world dataset, we sampled 500,000 points
uniformly in the [0, 1000] range for each top-level dimen-
sion and only 931 (0.18%) satisfied the constraints. Without
explicit enforcement, forecast values are extremely unlikely
to lie in the feasible region.



Second, the constraints among top-level sequences are
hard to be explicitly written. A natural approach is to
explicitly model the constraints and integrate them into
the multivariate time series forecasting process for top-
level sequences. However, in practical scenarios, the num-
ber of underlying sequences may be quite large, making it
hard to explicitly derive equality and inequality constraints
among top-level sequences. The time complexity of elimi-
nation is double-exponential (Fourier 1827) and proven no
polynomial-time algorithm unless P = NP (Tiwary 2012).

Third, underlying observations are often noisy or com-
pletely unavailable. Therefore, the Bottom-Up forecasting
method, a basic approach in hierarchical forecasting that ag-
gregates individual underlying forecasts into top-level pre-
dictions, suffers from low accuracy because the limited scale
of the underlying data impedes pattern learning (Das et al.
2023b; Xu et al. 2024). Advanced hierarchical forecasting
methods also heavily depend on underlying observations
and thus fail to achieve sufficient accuracy when the goal
is to forecast the top-level sequences.

To tackle these challenges, we propose ProCAST (a
Projection framework for Coupled Aggregation conStrained
multivariate Time series forecasting). ProCAST introduces
two projection approaches, orthogonal and oblique projec-
tion, that correct constraint-violating forecast points by pro-
jecting them into the feasible region. Unlike multivariate
methods that only model top-level sequences, and hierarchi-
cal methods requiring both top-level and underlying data,
our approach relies solely on top-level forecasts and the
aggregation structure, without needing observed underlying
values. During the projection process, we introduce virtual
underlying sequences as optimization variables and impose
simple constraints on them. Using the fixed aggregation pro-
cedure, we generate top-level forecasts that are inherently
feasible, eliminating the need to explicitly derive constraints
among top-level sequences. This approach additionally pre-
vents the introduction of noise and remains effective even
when underlying data is not available.

• We propose ProCAST built upon a multivariate time
series forecasting base model, incorporating projection
methods to enforce constraints. This approach ensures
both accuracy and feasibility of the top-level sequences.

• We introduce two projection approaches, orthogonal and
oblique projection, which come with rigorous theoretical
guarantees and achieve competitive results.

• By leveraging the inherent aggregate structure rather than
observed underlying values, the proposed method re-
mains effective even when the underlying sequence is
completely unavailable.

Related Work
Multivariate Time Series Forecasting
Multivariate time series forecasting aims to learn both tem-
poral and cross-variable dependencies. Early models relied
on mixed-channel inputs (Zhou et al. 2021; Zhang and Yan
2023), but subsequent work showed that modeling each vari-
able separately can also yield strong performance. For ex-

ample, (Nie et al. 2023) applies a Transformer to each vari-
able independently, and (Zeng et al. 2023) demonstrates the
power of simple linear decomposition. Later MLP-based
methods explored alternative mixing strategies to combine
information across series (Chen et al. 2023; Wang et al.
2024a,b). Other approaches employ specialized network ar-
chitectures to capture complex cross-variable dependencies
explicitly. (Cao et al. 2020) uses a graph-based method to
learn dependencies among variables, while (Liu et al. 2024)
applies attention across features instead of over time. KAN-
based models revisit variable-specific modeling with expert
gating networks (Han et al. 2024), and (Lu et al. 2024) cap-
tures cross-variable dependencies using a centralized strat-
egy with linear complexity. Despite their advances, these
automatic-learning methods still struggle with highly com-
plex dependencies, making them unsuitable for our problem.

Constrained Optimization Learning
This type of method involves machine learning and con-
strained optimization techniques to form integrated models
that incorporate constraints into the learning process (Kotary
et al. 2021; Tanneau and Hentenryck 2024).

Implicit methods incorporate optimization layers for end-
to-end training. (Agrawal et al. 2019) enables differentiation
through convex programs at high computational cost, and
(Amos and Kolter 2017) integrates quadratic programs via
implicit differentiation but requires strict convexity.

Explicit methods require known equality and inequality
constraints. (Donti, Rolnick, and Kolter 2021) applies equal-
ity completion and inequality correction, (Konstantinov and
Utkin 2023) uses line-search projections for convex con-
straints, and (Qiu, Tanneau, and Van Hentenryck 2024) en-
forces feasibility constraints via dual proxies.

However, our problem cannot be formulated with ex-
plicit constraints, and existing implicit methods are either
too costly or too restrictive.

Hierarchical Forecasting
In hierarchical time series forecasting, coherence is as im-
portant as accuracy. It requires that each aggregated forecast
equals the sum of its components, but this cannot be guaran-
teed when forecasting each series independently.

Traditional hierarchical methods ensure coherence by
forecasting a single level of the hierarchy and then recon-
cile forecasts using Top-Down (Athanasopoulos, Ahmed,
and Hyndman 2009; Das et al. 2023b), Bottom-Up (Jain
1995; Kahn 1998), or Middle-Out (Hollyman, Petropoulos,
and Tipping 2021) approaches.

On this basis, (Hyndman et al. 2011) introduced general-
ized least squares reconciliation, (Wickramasuriya, Athana-
sopoulos, and Hyndman 2019) uses the full error covariance,
and (Ben Taieb and Koo 2019) relaxes the unbiasedness as-
sumption. More recent works integrate reconciliation meth-
ods into end-to-end learning frameworks (Rangapuram et al.
2021; Tsiourvas et al. 2024).

However, these methods depend on noisy underlying ob-
servations, making it unlikely to improve accuracy and po-
tentially even worsen it when the forecast target focus solely
on top-level sequences.
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Figure 2: Overview of ProCAST, including two optional projection methods: orthogonal and oblique.

Problem Formulation
In this section, we formally define the problem of multivari-
ate time series forecasting with coupled aggregation con-
straints. We first provide a formal definition of the aggre-
gation structure, which combines the underlying sequences
to form the top-level sequences.
Definition 1 (Coupled Aggregation Structure). Assume
we have n top-level sequences, denoted as Y =
{y1, y2, . . . , yn}, and m underlying sequences, denoted as
X = {x1, x2, . . . , xm}. Top-level sequences are aggre-
gated from underlying sequences by a “summing” matrix
S ∈ {0, 1}n×m that satisfies Y = S · X . In addition, if S
does not satisfy the property in Eqn. (1), the structure have
no coupling and the problem is trivial. max

i=1,...,m

n∑
j=1

Sij

 > 1 (1)

The property in Eqn. (1) reveals coupling in the aggrega-
tion structure, where a single underlying sequence may be-
long to multiple top-level sequences as an aggregation com-
ponent. Focusing on our problem, we care only about the
accuracy of the top-level sequences and whether they sat-
isfy the constraints. In Definition 2, we formally define the
constraints among top-level sequences.
Definition 2 (Coupled-Coherence). Let Ŷ be a forecast
for top-level sequences. If there exist underlying sequences
X̂ ≥ 0 that satisfy the coupled aggregation structure S ·X̂ =

Ŷ , then we say that Ŷ satisfies coupled-coherence.
Then we define our problem as a forecast for the top-level

sequences satisfying coupled-coherence.
Definition 3 (Coupled-Coherence Forecasting Problem).
Given a coupled aggregation structure S and historical top-
level sequences Yt−h:t−1, the goal is to forecast the top-level
sequences Ŷt that minimize the forecast error in Eqn. (2)
while satisfying coupled-coherence constraints in Eqn. (3).

minL(Ŷt, Yt) (2)

s.t. ∃X̂ ≥ 0, S · X̂ = Ŷt (3)
L is a loss function that measures the forecast error between
the forecasted top-level sequences Ŷt and the true values Yt.

Methodology
Overview
Figure 2 illustrates the framework of ProCAST, including
two projection approaches for time series forecasting with
coupled aggregate constraints. ProCAST begins with a base
multivariate model that generates initial top-level sequence
predictions ŷ, which often violate the inherent coupled ag-
gregation constraints. To address this, we first project these
unconstrained predictions onto the feasible space via either
orthogonal or oblique projection, resulting in a virtual under-
lying sequence ỹ and then produce the final coherent fore-
casts that strictly satisfy the coupled aggregation constraints
using the summing matrix S.

Preliminaries of Projection
In this subsection, we conduct a geometric analysis of the
problem and deriving properties essential for our projection
methods. Theorem 2 proves that the set of points satisfying
coupled-coherence forms a convex cone, which serves as the
foundation for our projection methods.

Since we have n top-level sequences and m underlying
sequences, we work in the full space Rm+n, where n di-
mensions correspond to n top-level sequences and m to
the underlying sequences. Thus, at any given timestamp,
the values of all time series can be represented by a point
(x,y) ∈ Rm+n where y ∈ Rn is the values of top-level se-
quences and x ∈ Rm is the values of underlying sequences.

Next, we discuss the coupled aggregation structure be-
tween the top-level and underlying sequences. As described
in Definition 1, this relationship is mediated by matrix S
that y and x must satisfy y = S · x. This equation geomet-
rically defines a m-dimensional hyperplane in an (m + n)-
dimensional space, where a point satisfies the coupled ag-
gregation constraints if and only if it lies on this hyperplane.
Then we further incorporate the non-negativity constraint on
the values of underlying sequences, i.e., x ≥ 0.
Definition 4 (Coupled-Coherence Region). Let C ⊆ Rm+n

denote the region satisfying the coupled-coherence. The re-
gion C is defined by both coupled-aggregation constraints
and non-negativity constraints, as specified in Eqn. (4).

C =
{
(x,y) ∈ Rm+n

∣∣x ≥ 0, y = S · x
}

(4)



Theorem 1. Region C in full (m + n)-dimensional space
forms a convex cone.

Since our problem concerns only top-level sequence
prediction, we further consider the observable Coupled-
Coherence Region in n-dimensional space, which we term
the Projected Coupled-Coherence Region.
Definition 5 (Projected Coupled-Coherence Region). We
denote by π(·) the projection operation from an (m + n)-
dimensional space to an n-dimensional space. As defined in
Eqn. (5), the Projected Coupled-Coherence Region π(C) is
the projection of C onto the n-dimensional space. A value
of top-level sequence y satisfies Coupled-Coherence if and
only if y ∈ π(C) by Definition 2.

π(C) = {y ∈ Rn | ∃x ∈ Rm, x ≥ 0, y = S · x} (5)

Theorem 2. The Projected Coupled-Coherence Region
π(C) defined in Definition 5 is also a convex cone.

Orthogonal Projection
Prediction points that violate the coupled-coherence prop-
erty lie outside the projected coupled-coherence region
π(C). To enforce coupled-coherence, a straightforward strat-
egy is to move those points into π(C). We propose an orthog-
onal projection reconciliation method that eliminates any vi-
olation of coupled-coherence, and we prove that this method
is guaranteed to improve forecast accuracy with respect to a
class of loss functions based on a distance metric.

If a forecast point is inside the projected coupled-
coherence region, it is a trivial case and should remain un-
changed during reconciliation. If it lies outside, we must
map it back into the region. Here, we employ the orthog-
onal projection method as defined in Definition 6 to find the
closest point in the projected coupled-coherence region π(C)
to the forecast point ŷ, as shown in Figure 3.
Definition 6 (Orthogonal Projection). Given a forecast point
ŷ ∈ Rn, the orthogonal projection onto the projected
coupled-coherence region π(C) is defined in Eqn. (6).

ỹ = argmin
ỹ∈π(C)

∥ỹ − ŷ∥22 (6)

Where ∥ · ∥2 denotes the Euclidean norm, ỹ ∈ Rn is the
reconciled top-level sequence.

ℝ𝑚
+
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Figure 3: Orthogonal and Oblique projection of a forecast
point onto the Projected Coupled-Coherence Region π(C).

In this context, orthogonal projection does not refer to the
usual perpendicular projection onto a subspace. It instead
means finding the point in target set that is closest to the orig-
inal point, which in fact projects onto a convex cone, as we
discussed in Theorem 2. According to the Hilbert Projection
Theorem (Rudin 1991), the orthogonal projection defined in
Definition 6 guarantees to yield a unique solution ỹ.

Furthermore, we can prove in Theorem 3 that the orthog-
onal projection never increases the sum of squared errors.

Lemma 1. Let ŷ ∈ Rn be a forecast point and ỹ ∈ π(C) be
the orthogonal projection of ŷ onto π(C). Then, ∀y ∈ π(C),
we have (y − ỹ)

⊤
(ỹ − ŷ) ≥ 0 always holds.

Proof. Let us define f(ỹ) = ∥ỹ − ŷ∥22. According to the
First-order optimality conditions, ∀y ∈ π(C), we have
∇f(y)⊤(y − ỹ) ≥ 0. Since ∇f(ỹ) = 2(ỹ − ŷ), we have
2(ỹ − ŷ)⊤(y − ỹ) ≥ 0 holds.

Theorem 3. Let ŷ ∈ Rn be a forecast point and ỹ ∈ π(C)
be the orthogonal projection of ŷ onto π(C). Then, we have
Eqn. (7) always holds.

∀y ∈ π(C), ∥y − ỹ∥2 ≤ ∥y − ŷ∥2 (7)

Proof. By Lemma 1, we have (y − ỹ)
⊤
(ỹ − ŷ) ≥ 0 for

any y ∈ π(C).

0 ≤ (y − ỹ)
⊤
(ỹ − ŷ)

≤ 2 (y − ỹ)
⊤
(ỹ − ŷ) + ∥ỹ − ŷ∥22

= ∥(y − ỹ) + (ỹ − ŷ)∥22 − ∥y − ỹ∥22
= ∥y − ŷ∥22 − ∥y − ỹ∥22

Thus, we have ∀y ∈ π(C), ∥y − ỹ∥2 ≤ ∥y − ŷ∥2.

Since the ground truth of top-level sequences always lies
in π(C), Theorem 3 ensures that applying the orthogonal
projection reconciliation method will never increase the pre-
diction error based on a distance metric.

However, the problem posed in Eqn. (6) cannot be solved
directly, since π(C) cannot be explicitly characterized. To
address this issue, we build on Eqn. (6) by introducing op-
timization variables x̃ for underlying sequences, thus refor-
mulating the problem as Eqn. (8).

min
x̃∈Rm

∥ŷ − S · x̃∥22
subject to x̃ ≥ 0

(8)

This reduces to a non-negative least squares (NNLS)
problem, which can be solved efficiently using TNT-NN
(Myre et al. 2018). Although the optimizer x̃ in Eqn. (8)
is not unique and undetermined, the result S x̃ is well-
defined and unique. Moreover, Theorem 4 shows that solv-
ing Eqn. (8) is equivalent to performing the orthogonal pro-
jection in Eqn. (6), which is also unique.

Theorem 4. Let ỹ be the optimal point of Eqn. (6) and x̃
be the optimal point of the optimization problem in Eqn. (8).
Then ỹ = S · x̃ always holds.



Oblique Projection
Despite the fact that orthogonal projection admits a unique
solution and guarantees an improvement over the origi-
nal prediction, it is not necessarily the projection that will
yield the maximum improvement in forecast accuracy as ex-
pected. To address this issue, we further enhance the orthog-
onal projection method by incorporating a data driven ap-
proach. We learn a “projection matrix” P from historical
data, which enables the projected points to lie within the
convex cone. To distinguish it from the orthogonal projec-
tion approach, we call this the oblique projection method.

Specifically, we modify the optimization problem in
Eqn. (8) and embed it into our training loop so that the
model learns patterns from the historical ground truth. We
then rewrite the original decision variable x̃ as P · ŷ and
shift the objective from “matching ŷ” to “matching the his-
torical ground truth y.” In this way, the learned matrix P
serves as a mapping from the observed top-level sequence
to a valid underlying sequence, as shown in Figure 3.

The deviation of a single forecast from its ground truth
is essentially random, and it cannot define an oblique-
projection direction by itself. To address this, we gather h
consecutive historical points and share the projection matrix
P to learn their overall deviation direction. As Definition 7
shows, we optimize P over the past h timestamps and then
use the optimized matrix P as the direction of oblique pro-
jection the current timestamp to produce reconciled forecast.
Definition 7 (Oblique Projection). Given a coupled aggre-
gation structure S, a set of predictions for top-level se-
quences ŷt−h:t and historical ground truth of top-level se-
quences yt−h:t−1, the projection matrix P at timestamp
t can be learned in Eqn. (9), where h is the number of
historical timestamps used to learn the projection matrix.
Then the reconciled forecast of ŷt via oblique projection is
ỹt = S ·max (P · ŷt, 0).

min
P∈Rm×n

h∑
i=1

∥S · P · ŷt−i − yt−i∥22

subject to P · ŷt−i ≥ 0 i = 1, . . . , h

(9)

The oblique projection minimizes the variance of the pre-
diction error in reconciled forecast. Oblique projection is
characterized by a statistical property, as it is optimal in ex-
pectation, as shown in Theorem 5.
Theorem 5. Let ŷt be the forecast point at timestamp t and
ỹt be the oblique projection of ŷt onto π(C). Assuming sta-
tionarity, i.e. the joint distribution of (ŷτ ,yτ ) is the same for
all time τ ∈ [t− h, t], we have

E
[
∥ỹt − yt∥22

]
≤ E

[
∥ŷt − yt∥22

]
. (10)

Proof. Define the population mean-squared error of any
projection matrix Q ∈ Rm×n by

M(Q) = E
[∥∥SQŷt − yt

∥∥2
2

]
.

By stationarity, the matrix

P = argmin
Q∈Rm×n

s.t. Qŷt−i≥0

h∑
i=1

∥∥SQŷt−i − yt−i

∥∥2
2

also satisfies M(P ) ≤ M(Q) for every feasible Q. In par-
ticular, there exists some P0 (satisfy P0 · ŷt = x̂t) such that
S ·max (0, P0ŷt) = ŷt.

M(P0) = E
[∥∥ŷt − yt

∥∥2
2

]
.

Therefore we have

E
[∥∥ỹt − yt

∥∥2
2

]
= M(P ) ≤ M(P0) = E

[∥∥ŷt − yt

∥∥2
2

]
.

Theorem 5 assumes stationarity of the joint distribution of
the forecast and ground truth. However, in practice, the dis-
tribution may shift over time due to factors such as seasonal-
ity or trend. For some relatively stable time series these shifts
may occur only on an annual scale (Schwarzkopf, Tersine,
and Morris 1988). To address this, we recommend learning
the projection matrix P from the most recent data, as de-
viation patterns evolve smoothly between successive times-
tamps. If the historical window is too long, the learned P
may no longer suit the current correction, degrading the ac-
curacy of reconciled forecast.

Implementation Details
Orthogonal Projection The orthogonal projection
method solves the non-negative least squares (NNLS) prob-
lem in Eqn. (8), which involves only m variables subject to
m inequality constraints. We use the TNT-NN algorithm to
solve this problem, which is 95 times faster than FNNLS
algorithm (Myre et al. 2018). The algorithm builds and
updates an active set, so a precise time complexity formula
is not readily available. In most cases, its time complexity is
roughly O(m2), and it performs well in practice.

Oblique Projection The oblique projection method learns
the projection matrix P by solving the optimization prob-
lem in Eqn. (9). This problem involves m× n variables and
h × m inequality constraints. Although oblique projection
solves for more parameters than orthogonal projection, we
exploit the smooth evolution of the projection matrix P be-
tween consecutive timestamps by using solution from each
timestamp to initialize the next. This reduces computational
cost by roughly two orders of magnitude.

Experiments
Datasets
To comprehensively evaluate the effectiveness of our pro-
posed projection methods for multivariate time series with
coupled aggregate constraints, we conducted experiments on
two real-world multivariate time series datasets.

E-Commerce Dataset This dataset comprises all transac-
tions recorded between December 1, 2010, and December 9,
2011, by a UK-based online retailer that operates without a
physical store. The company primarily sells distinctive gifts
for various occasions, with a significant portion of its cus-
tomers being wholesalers (Chen 2012). The dataset contains
the daily sales quantities of over 2,000 products as underly-
ing sequences. These products are aggregated into 14 cate-
gories with coupling, which serve as the top-level sequences.



Dataset E-Commerce Dataset RH Dataset
Metric MAE RMSE MAE RMSE
Method Raw BU MinT Ortho. Obliq. Raw BU MinT Ortho. Obliq. Raw Ortho. Obliq. Raw Ortho. Obliq.

NBEATS 1092 1149 1083 1092 1024 1983 2052 1975 1983 1877 827.3 827.3 752.7 1262 1262 1153
NBEATSx 1092 1149 1083 1092 1024 1983 2052 1975 1983 1877 827.3 827.3 752.7 1262 1262 1153

NHITS 1103 1194 1100 1103 1032 2001 2102 2002 2001 1901 867.5 867.5 807.0 1331 1331 1240
TimesNet 1050 1175 1082 1050 1038 1949 2087 1989 1949 1887 584.1 584.6 562.9 880.4 879.9 842.4

TCN 1067 1258 1086 1067 1054 1959 2155 1985 1959 1912 674.7 674.7 638.2 1013 1013 951.2
BiTCN 1073 1174 1075 1073 1069 1978 2084 1979 1978 1896 3382 3379 3046 5674 5655 5306

DeepNPTS 1058 1209 1111 1058 1039 1944 2115 2015 1944 1886 664.0 664.0 630.3 1023 1022 961.7
TFT 1065 1236 1074 1065 1048 1957 2133 1969 1957 1877 608.7 610.2 582.7 913.7 909.3 860.9
TiDE 1080 1122 1120 1080 1032 1985 2033 2030 1985 1886 1258 1258 1133 1949 1949 1762

DLinear 1456 1549 1496 1414 1319 2411 2500 2406 2330 2226 3690 3311 3283 9510 7620 7539
Informer 3053 2890 3048 3053 1406 3702 3560 3698 3702 2347 2.2e4 2.2e4 2.1e4 2.7e4 2.7e4 2.6e4

Autoformer 1050 1114 1058 1050 1052 1950 2032 1963 1950 1880 1025 1025 910.4 1554 1554 1388
FEDformer 1053 1115 1059 1053 1045 1949 2029 1958 1949 1874 595.5 595.5 571.9 901.5 901.4 854.7
PatchTST 1041 1122 1054 1041 1057 1924 2030 1945 1924 1881 589.7 589.6 561.8 864.3 864.3 817.9
TimeXer 1074 1169 1082 1074 1061 1973 2075 1981 1972 1897 799.3 799.6 741.3 1214 1213 1115

TimeMixer 1063 1149 1067 1063 1051 1966 2062 1972 1966 1887 608.3 608.8 585.9 920.9 920.5 878.1
TSMixer 1057 1140 1065 1057 1048 1959 2054 1968 1959 1877 619.0 619.0 589.0 948.6 948.6 888.6

TSMixerx 1062 1134 1067 1062 1057 1963 2047 1966 1963 1897 731.6 733.5 704.8 1123 1118 1061
iTransformer 1097 1173 1091 1097 1076 1983 2075 1981 1982 1928 612.7 612.8 595.2 917.8 916.4 883.7

RMoK 1072 1162 1076 1072 1047 1962 2069 1969 1962 1901 682.1 682.6 634.6 1037 1037 957.5
SOFTS 1106 1174 1093 1106 1091 1984 2075 1981 1984 1921 669.7 670.5 634.9 986.8 986.3 927.8

StemGNN 1059 1236 1083 1059 1055 1950 2136 1981 1950 1886 890.7 894.0 826.0 1396 1367 1258

Table 1: Main results of the proposed method on the E-Commerce and RH datasets. Best results are bolded; second-best
underlined; cells shaded in gray indicate predictions that violate Coupled-Coherence. “Raw” denotes uncorrected forecasts;
“BU” (Bottom-Up) and “MinT” (MinTrace) are hierarchical methods; “Ortho.” and “Obliq.” indicate orthogonal and oblique
projections of the proposed ProCAST framework, respectively.

RH Dataset The time series in this dataset are derived
from the Exchange-Rate dataset (Lai et al. 2018) and are
adjusted according to real-world coupled aggregation struc-
tures. The dataset contains 7 top-level sequences and simu-
lates the scenario that values of the underlying sequences are
not accessible. This highlights the practical significance of
our proposed method: even when the underlying sequences
are completely unavailable, our method remains effective.

Evaluation Metrics
We adopt a variety of evaluation metrics to assess predic-
tion quality. Since our proposed method comes with theoret-
ical guarantees for distance-based measures, we select Root
Mean Squared Error (RMSE) as a representative distance-
based metric. We also include Mean Absolute Error (MAE)
to demonstrate the practical effectiveness of our approach.

Baselines
To validate the effectiveness of our proposed projection
methods, we compare them against established forecasting
techniques, including univariate models, multivariate mod-
els, and hierarchical forecasting approaches.

We begin by incorporating several state-of-the-art univari-
ate forecasting models as base predictors in ProCAST. Al-
though these models disregard cross-variable relationships,
our projection technique guarantees that their forecasts lie
within the Projected Coupled-Coherence Region π(C). The
univariate models include NBEATS, NBEATSx, NHITS,

TimesNet, TiDE, DeepNPTS, TFT, TCN, BiTCN, and FED-
former (Oreshkin et al. 2020; Olivares et al. 2022; Challu
et al. 2023; Wu et al. 2023; Das et al. 2023a; Rangapuram
et al. 2023; Lim et al. 2021; Lea et al. 2016; Sprangers,
Schelter, and de Rijke 2023; Zhou et al. 2022).

For multivariate models, we consider Informer, PatchTST,
TimeXer, iTransformer, DLinear, TSMixer, TimeMixer,
SOFTS, StemGNN, and RMoK (Zhou et al. 2021; Nie et al.
2023; Wang et al. 2024b; Liu et al. 2024; Zeng et al. 2023;
Chen et al. 2023; Wang et al. 2024a; Lu et al. 2024; Cao
et al. 2020; Han et al. 2024).

To further demonstrate the effectiveness of our approach,
we also evaluate hierarchical reconciliation methods on the
E-Commerce dataset, which provides underlying series ob-
servations. The tested methods include the Bottom-Up (Jain
1995) method and the MinTrace (Wickramasuriya, Athana-
sopoulos, and Hyndman 2019) method.

Main Results
We evaluated our method on two datasets using a historical
window of h = 72 time steps for oblique projection. Ta-
ble 1 presents the average results over 5 runs with different
random seeds. On the E-Commerce dataset, which includes
underlying observations, we compared our approach against
the Bottom-Up and MinT hierarchical forecasting methods.
The RH dataset, however, cannot support hierarchical tech-
niques because it lacks any underlying sequences.

All base forecasting models on both datasets produce
some predictions that violate Coupled-Coherence, as shown
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Figure 4: Hyperparameter sensitivity of h for the top-9 base
forecasting models on the E-Commerce dataset.

in the gray cells in Table 1, with such violations occurring
especially frequently in the RH dataset.

Across all datasets and base models, orthogonal projec-
tion consistently improves RMSE, as predicted by Theo-
rem 3. Theorem 5 guarantees that oblique projection mini-
mizes the expected loss and achieves the lowest RMSE. Em-
pirically, our method achieves an average relative RMSE re-
duction of 5.15% on the E-Commerce dataset and 7.10% on
the RH dataset, demonstrating its robustness across differ-
ent settings. Even for MAE, where no theoretical guarantee
is available, our projections still yield an average relative re-
duction of 4.33% and 6.19%, respectively, producing most
of the best results and confirming practical effectiveness.

As for hierarchical forecasting methods, the Bottom-Up
method performs worst, suffering from noise in the underly-
ing observations. Although MinT provides moderate gains,
it still typically underperforms the original forecasts.

Sensitivity Study
We evaluated the temporal continuity of the oblique projec-
tion matrix P by varying the historical window h and ob-
serving its effect on the reconciled forecasts. Figure 4 shows
the 9 models with the lowest RMSE on the E-Commerce
dataset (where h = 0 corresponds to the uncorrected fore-
casts). When h < 40, forecast error is highly volatile, re-
flecting insufficient historical information. As h grows from
40 to 80, error steadily decreases, demonstrating that P re-
mains stable and can be learned reliably within this range.
Beyond h = 80, error begins to rise again, since P gradually
drifts and old observations no longer yield valid corrections.

Ablation Study
We use a matrix P in oblique projection method to map the
top-level predictions (ŷ) to virtual underlying sequence (x̃).
A natural question is why we adopt a linear mapping rather
than a more complex nonlinear one. We conduct ablation
study comparing different mapping structures.

Intuitively, aggregation x → y is linear via matrix S, so
modeling ŷ → x̃ via linear P is natural. We also tested re-
placing P with MLP, but observed accuracy degradation as
model width/depth increased, as shown in Figure 5. Since in-
finitely many x̃ satisfy the same y, nonlinear models “over-
fit” easily, while linear P regularizes the underdetermined x,
thus improving top-level accuracy.
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Figure 5: RMSE of Oblique Projection using different archi-
tecture of MLP as P on the E-Commerce dataset.
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Figure 6: Iterations to coverage of oblique projection on pre-
dict days for reuse of P and no-reuse.

Time Consumption
As described in implementation details, we leverage the
smooth temporal evolution of the projection matrix P by
using solution of each timestamp to initialize the next. Com-
parative experiments on two datasets show that reusing P
accelerates convergence, as shown in Figure 6, revealing
strong temporal continuity. We observe up to 80× speedup
on the E-Commerce dataset and 150× on the RH dataset.

On Platinum 8352V+RTX4090, 72-day inference of RH
dataset: base model costs approximately 0.3s, Orthogo-
nal Projection costs approximately 0.3s, Oblique Projec-
tion costs approximately 20s (while without reusing P costs
300s). For day-level forecast on our datasets and in practice,
time is not a bottleneck, coherence and accuracy are critical.

Conclusion
ProCAST addresses the challenge of forecasting top-level
series under coupled aggregation constraints by projecting
unconstrained forecasts back into the valid aggregation re-
gion. By introducing virtual underlying sequences, it relies
solely on top-level data and the known aggregation struc-
ture, ensuring accuracy and robustness even when underly-
ing observations are noisy or missing. We prove that Pro-
CAST guarantees error reduction under distance-based loss
functions and show, on multiple real-world datasets, that
it outperforms both standard multivariate and hierarchical
methods while always satisfying aggregation constraints. By
combining strong theoretical guarantees with practical re-
silience, ProCAST delivers a reliable solution for forecast-
ing in complex business and economic environments.
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